头条屋小说网

手机浏览器扫描二维码访问

第351章 布丁(第1页)

PSI为分类数据,取1表示接受了新的教学方法指导,0表示没有接受新的教学方法指导;GPA表示学生平均积分点,为数值型数据;TUC表示以往的学生成绩,为数值型数据。假如,想了解GPA、TUC和PSI对学生成绩是否有影响,以及预测学生学习成绩是否会提高,你会选择下述用哪个。

模型?为什么?(A.线性回归B.逻辑回归C.聚类D.关联规则挖掘)你的选择:逻辑回归你的解释:逻辑回归是一种广泛应用于分类问题的机器学习算法。在这个情况下,我们的目标是预测学习成绩是否提高,这是一个二分类问题,即学习成绩提高或不提高。逻辑回归可以用来建立一个概率模型,根据给定的特征值(GPA、TUC和PSI),计算出学生成绩提高的概率。逻辑回归模型的输出是一个概率值,表示学生成绩提高的可能性。这使得我们能够根据学生的特征值进行预测,并判断他们学习成绩是否会提高。此外,逻辑回归还可以提供每个特征的权重系数,帮助我们理解各个特征对学生成绩的影响程度。线性回归(A.线性回归)也可用于这个问题,但它更适用于连续数值型的目标变量的预测,而不是二分类问题。聚类(C.聚类)是无监督学习方法,不适用于这个情况。关联规则挖掘(D.关联规则挖掘)通常用于发现数据中的频繁项集和关联关系,不太适合用于预测学生成绩的问题。因此,在给出的选项中,选择使用逻辑回归模型(B.逻辑回归)是合适的,它可以用于预测学生学习成绩是否会提高,并了解GPA、TUC和PSI对学生成绩的影响程度。4、K-means算法在给定数据集上运行第一次后的结果为,数据集分为三个簇:cluster1:(1,3)、(2,4);cluster2:(4,0)、(2,0);cluster3:(0,3)、(0,5)。样本(0,3)和cluster2的质心之间的曼哈顿距离为:你的答案:5你的计算过程:Cluster2的质心:(4+2)2=3;0样本的坐标是(0,3),Cluster2的质心是(3,0)。将给定的点代入公式,我们有:d=|3-0|+|0-3|=|3|+|-3|=3+3=6。

。。

1Bagging(包装法):优势:Bagging通过随机有放回地对训练数据进行采样,每个基分类器独立训练,然后通过投票或平均等方式进行集成,能够有效降低过拟合风险,提高模型的泛化能力。它尤其适合在高方差的模型上使用,如决策树等。局限性:对于高偏差的模型来说,Bagging可能无法显着改善模型性能。此外,由于基分类器的独立性,Bagging不容易处理存在较强相关性的数据,比如时间序列数据。使用场景:Bagging通常用于分类和回归问题,在数据集较大且噪声相对较小的情况下表现良好。2Boosting(提升法):优势:Boosting通过迭代地训练一系列基分类器,并根据前一个分类器的性能对样本权重进行调整,使得基分类器逐渐关注于难以分类的样本。它能够有效提高模型的精度和泛化能力,尤其适合解决高偏差的问题。局限性:Boosting对噪声和异常值比较敏感,容易导致过拟合。此外,由于基分类器之间存在依赖关系,Boosting的训练过程相对较慢。使用场景:Boosting通常用于分类问题,在需要处理高偏差或低准确度的场景下表现出色。3Stag(堆叠法):优势:Stag通过在多个基分类器上构建一个元分类器来进行集成,可以充分利用各个基分类器的预测结果,进一步提升性能。通过允许使用更复杂的元分类器,Stag具有更强大的表达能力。局限性:Stag的主要挑战在于选择合适的元特征以及使用交叉验证避免数据泄露。此外,Stag通常需要更多的计算资源和时间来进行模型训练和预测。使用场景:Stag适用于各类机器学习问题,并且在数据集相对较大、前期已经进行了一定特征工程的情况下效果较好。

兽世重生,情敌太多狼夫哭唧唧  扮演岩王帝君多年后,我穿回来了  我与十位,美女总裁的故事  抗战之烽火特勤组  资深颜控闯荡娱乐圈  闪婚后偏执大佬每天狂宠我  西游之白话版  强撩!暗哄!我怀了全球首富的崽  生子就变强,我一年365胎  将军公主  退婚当天,三崽带我闪婚千亿隐富  快穿:尤物穿成万人嫌工具人女配  最强赛亚人传说  盗墓:开局让吴二白暴揍黑瞎子  女魔头只想攻略她师叔  天灾末世小人物囤货带美女跑路了  爸爸,求你,不要打我了  爱上她的理由  白昼独行  仙道衍  

热门小说推荐
都市寻艳录

都市寻艳录

身世坎坷历经沧桑人间情意究竟为何物?妈妈是什么?奶奶是什么?姑姑婶婶又是什么?也许,都是女人罢了。你们给了我们生活的必须,但是她们没有给我们家庭的温暖,因此从理智上我们应该感激你们的,可是感情上很多时候是会出现偏差的。我喜欢熟女喜欢年龄稍大的女人当然是女人我都会喜欢当然是那种好女人...

六零俏佳人

六零俏佳人

新书我家夫人又败家了已发求收藏,古代美食文,么么哒前世,盛夏怨恨家人的无情抛弃,为贺家人那群白眼狼付出所有,最后却落了个草席一裹,抛尸荒山的下场!重生回到悲剧尚未开始,盛夏发誓今生不会再将真心错付!哪怕吃树皮啃草根,她也要留在家人身边,同甘共苦!改写命运!一家人同心协力,走上致富的康庄大道!携手冷面男神...

提前登陆三百年

提前登陆三百年

新书从获得奇遇点开始宇宙深处飞来一座浩瀚无垠的大陆,从此整个世界都不一样了。同时陈荣火脑海里还突然出现了一本古书,按照古书的指引,他提前其他人三百年登陆到了新界。同样在书籍的指引下,在新界中,他的左手也变得不一样了。他从地下挖出一颗夜明珠,啪的一声,夜明珠被他捏碎,但是夜明珠的‘夜光属性’却留在了他手里。琢磨了...

歌王

歌王

在我心中,曾经有一个梦,  要用歌声让你忘了所有的痛。  灿烂星空,谁是真的英雄,  平凡的人们给我最多感动。    重生平行世界,缔造歌王传奇!...

不朽界祖

不朽界祖

元祖破天战诸界,青血染天万古流帝钟敲日震寰宇,一肩担尽古今愁!一个地球小子,得无上传承,他踏遍诸天万界,他会尽亿万天骄!他一点点的寻找地球先辈的足迹,焱灭鸿蒙界,炎帝已成了亘古传说,极道星辰界,秦蒙二字已成了禁忌,九源浑天界,罗城主已化为了不朽雕塑,荒古断天界,荒天帝已消失在万古时空中作者自定义标签豪门位面嚣张重生...

混在日本女校的高手

混在日本女校的高手

为了躲避一个美女疯狂的纠缠,叶权宇在好友的帮助下偷偷来到日本,光荣地成为了圣樱花女子高中的第一名男学生,原本只想平静读完高中的他,面对一群萌萌的少女,生活又怎么可能平静得了?交流群号2746792欢迎大家前来交流吐槽!...

每日热搜小说推荐